This is great: it’s the leader’s role to focus on ‘narrow’ technical aspects of the work,” she says. Ekateryna Shelest, Head of the Bioinformatics Unit at the German Centre for Integrative Biodiversity Research (iDiv) in Leipzig, Germany, has found that it can be challenging to help very creative people focus enough to finish projects. “One of my students was very talented and was always coming up with a lot of great new ideas, but I needed him to focus,” she recalls. “On the EMBO Lab Leadership course, we learned coaching techniques – breaking down tasks into manageable pieces, setting intermediate goals, monitoring progress, meeting regularly and giving feedback and guidance. I have seen a different world of leadership and this has been especially important for work with my PhD students: the outcome is remarkable.”

Shelest took the course in February of this year to support her leadership of multidisciplinary work that combines areas such as sequence analysis, ‘omics’ data integration, and the functional analysis of genomes. She says it is important for a leader not to get buried in the detail. “Our field develops very fast, and a Master’s student may be more advanced than a group leader in terms of ‘narrow’ technical aspects of the work,“ she says. “This is great: it’s the leader’s role to focus on the broader scientific view, delegate tasks, help people to excel and to set ambitious, but realistic goals. My job is to provide the overarching vision that touches the interests of everyone and lay out the goals that can help our team to achieve its best work.”

One of the ways to do that, she says, is to consider the strengths and preferences of each team member. “Personal interests and inclinations are very important: select the tasks and challenges that people like to do, set them ambitious targets, and above all, be yourself and do what you are good at.”

The experiences of researchers who have attended an EMBO Lab Leadership course show that there is no rule book for becoming a great leader. Rather, by applying models, tools and concepts to the huge range of challenges that science leaders face, it can bring out the best qualities of a team. And that, in turn, benefits science.

Motivation

When we ask participants how motivation feels, they usually come up with things like: high energy, happy, satisfied, in control, sense of achievement. In short: motivation feels great! The bad news is that you cannot motivate other people – they can only motivate themselves.

Consider individual strengths

Ekateryna Shelest, Head of the Bioinformatics Unit at the German Centre for Integrative Biodiversity Research (iDiv) in Leipzig, Germany, has found that it can be challenging to help very creative people focus enough to finish projects. “One of my students was very talented and was always coming up with a lot of great new ideas, but I needed him to focus,” she recalls. “On the EMBO Lab Leadership course, we learned coaching techniques – breaking down tasks into manageable pieces, setting intermediate goals, monitoring progress, meeting regularly and giving feedback and guidance. I have seen a different world of leadership and this has been especially important for work with my PhD students: the outcome is remarkable.”

Shelest took the course in February of this year to support her leadership of multidisciplinary work that combines areas such as sequence analysis, ‘omics’ data integration, and the functional analysis of genomes. She says it is important for a leader not to get buried in the detail. “Our field develops very fast, and a Master’s student may be more advanced than a group leader in terms of ‘narrow’ technical aspects of the work,” she says. “This is great: it’s the leader’s role to focus on the broader scientific view, delegate tasks, help people to excel and to set ambitious, but realistic goals. My job is to provide the overarching vision that touches the interests of everyone and lay out the goals that can help our team to achieve its best work.”

One of the ways to do that, she says, is to consider the strengths and preferences of each team member. “Personal interests and inclinations are very important: select the tasks and challenges that people like to do, set them ambitious targets, and above all, be yourself and do what you are good at.”

The experiences of researchers who have attended an EMBO Lab Leadership course show that there is no rule book for becoming a great leader. Rather, by applying models, tools and concepts to the huge range of challenges that science leaders face, it can bring out the best qualities of a team. And that, in turn, benefits science.

When we ask participants how motivation feels, they usually come up with things like: high energy, happy, satisfied, in control, sense of achievement. In short: motivation feels great! The bad news is that you cannot motivate other people – they can only motivate themselves.

What you can do, as a leader, is to ensure that your people have the appropriate environment in which they can themselves feel motivated. The American psychologist Frederik Herzberg provides a useful model (shown below) for ensuring that such an environment is in place, and for trouble-shooting with a team member what is missing for them if they are currently struggling with their levels of motivation.

The American psychologist Frederik Herzberg worked with 200 employees in Pittsburgh in the 1950s to discover their attitudes to their jobs, what led to these attitudes, and how this affected their motivation. He identified two main areas: Hygiene Factors and Motivation Factors. When Hygiene Factors are missing, we experience dissatisfaction and struggle to feel motivated. When Motivation Factors are present, we experience satisfaction and are capable of even higher levels of motivation. All of these factors together contribute to motivation and the feelings that accompany it.